References
Keen, D. A. Disordering phenomena in superionic conductors. J. Phys. Condens. Matter 14, R819–R857 (2002).
Knauth, P. & Tuller, H. L. Solid-state ionics: Roots, status, and future prospects. J. Am. Ceram. Soc. 85, 1650–1680 (2002).
Hull, S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004).
Wagner, C. The electromotive force of the cell: Ag|AgI|Ag2S|Pt(+S). Z.Elektrochem. Angew. Phys. Chem. 40, 364–365 (1934).
CAS Google Scholar
Miyatani, S. Electrical properties of the pseudo-binary systems Ag2TexSe1−x, Ag2TexS1−x, and Ag2SexS1−x . J. Phys. Soc. Jpn. 15, 1586–1595 (1960).
Yokota, I. On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J. Phys. Soc. Jpn. 16, 2213–2223 (1961).
Rickert, H. & Wagner, C. Stationary conditions and stationary transport occurrences in silver sulfide in a temperature gradient. Ber. Bunsenges. Phys. Chem. 67, 621–629 (1963).
Wysk, H. & Schmalzried, H. Electrochemical investigation of the α/β-phase transition of silver sulfide. Solid State Ion. 96, 41–47 (1997).
Shukla, A. K. & Schmalzried, H. Electron transport studies of α-silver sulfide. Z. Phys. Chem. 118, 59–67 (1979).
Rickert, H. & Wiemhöfer, H.-D. Stability behavior of mixed conducting solidsafter applying electrical potential differences—Measurements with pointelectrodes on Ag2S and Cu2S. Ber. Bunsenges. Phys. Chem. 87, 236–239 (1983).
Kleinfeld, M. & Wiemhöfer, H.-D. Chemical diffusion-coefficients and stability of CuInS2 and CuInSe2 from polarization measurements with point electrodes. Solid State Ion. 28, 1111–1115 (1988).
Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).
van Ruitenbeek, J. Silver nanoswitch. Nature 433, 21–22 (2005).
Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).
Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Mater. 4, 805–818 (2005).
Bonnecaze, G., Lichanot, A. & Gromb, S. Electronic and electrogalvanic properties of α silver telluride. J. Phys. Chem. Solids 44, 967–974 (1983).
Preis, W. & Sitte, W. Electrochemical cell for composition dependent measurements of electronic and ionic conductivities of mixed conductors and application to silver telluride. Solid State Ion. 76, 5–14 (1995).
Riess, I. I–V relations in semiconductor with ionic motions. J. Electroceram. 17, 247–253 (2006).
Sales, B. C. Critical overview of recent approaches to improved thermoelectric materials. Int. J. Appl. Ceram. Tech. 4, 291–296 (2007).
Sales, B. C. Smaller is cooler. Science 295, 1248–1249 (2002).
Lange, S. & Nilges, T. Ag10Te4Br3: A new silver(I) (poly)chalcogenide halide solid electrolyte. Chem. Mater. 18, 2538–2544 (2006).
Lange, S. Polymorphism, structural frustration, and electrical properties of the mixed conductor Ag10Te4Br3 . Chem. Mater. 19, 1401–1410 (2007).
Nilges, T., Bawohl, M. & Lange, S. Ag10Te4Br3−xClx and Ag10Te4Br3−yIy: Structural and electrical property tuning of a mixed conductor by partial anion substitution. Z. Naturforsch. 62b, 955–964 (2007).
Nilges, T. & Bawohl, M. Structures and thermal properties of silver(I) (poly)chalcogenide halide solid solutions Ag10Te4−(q,p)Q(q,p)Br3 with Q=S, Se. Z. Naturforsch. 63b, 629–636 (2008).
Lange, S., Bawohl, M. & Nilges, T. Crystal structures, thermal and electrical properties of the new silver (poly)chalcogenide halides Ag23Te12Cl and Ag23Te12Br. Inorg. Chem. 47, 2625–2633 (2008).
Fujikane, M., Kurosaki, K., Muta, H. & Yamanaka, S. Thermoelectric properties of α- and β-Ag2Te. J. Alloys Compounds 393, 299–301 (2005).
Kurosaki, K., Kosuga, A., Muta, H., Uno, M. & Yamanaka, S. Ag9TlTe5:A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005).
Papoian, G. A. & Hoffmann, R. Hypervalenzverbindungen in einer, zwei und drei Dimensionen: Erweiterung des Zintl–Klemm–Konzepts auf nichtklassische elektronenreiche Netze. Angew. Chem. 112, 2500–2544 (2000).
Wu, H.-L., Goff, W. & Phillips, P. Insulator–metal transitions in randomlatticescontaining symmetrical defects. Phys. Rev. B 45, 1623–1628 (1992).
Korte, C. & Janek, J. Nonisothermal transport properties of α-Ag2+dS:Partial thermopowers of electrons and ions, the Soret effect and heats of transport. J. Phys. Chem. Solids 58, 623–637 (1997).
Dordor, P., Marquestaut, E. & Villeneuve, G. Dispositif de mesures du pouvoir thermoélectrique sur des échantillons très résistants entre 4 et 300 K. Rev. Phys. Appl. 15, 1607–1612 (1980).
Dovesi, R. CRYSTAL06, Torino, Italy, (2007).
Towler, M. D., Causa, M. & Zupan, A. Density functional theory in periodicsystems using local Gaussian basis sets. Comput. Phys. Commun. 98, 181 (1996).
Becke, A. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).
Savin, A., Nesper, R., Wengert, S. & Fässler, T. E. Die Elektronenlokalisierungsfunktion—ELF. Angew. Chem. 109 1892–1918 (1997); ELF: The electron localization function. Angew. Chem. Int. Ed. Engl.36, 1808–1832 (1997).
Weihrich, R., Anusca, I. & Zabel, M. Halbantiperowskite: Zur Struktur der Shandite M3/2AS (M=Co, Ni; A=In, Sn) und ihren Typ-Antitypbeziehungen. Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).
Penner, G. H. & Wenli, L. Silver 109 NMR spectroscopy of inorganic solids. Inorg. Chem. 43, 5588–5597 (2004).