Reversible switching between p- and n-type conduction in the semiconductor Ag10Te4Br3 (2024)

References

  1. Keen, D. A. Disordering phenomena in superionic conductors. J. Phys. Condens. Matter 14, R819–R857 (2002).

    Article CAS Google Scholar

  2. Knauth, P. & Tuller, H. L. Solid-state ionics: Roots, status, and future prospects. J. Am. Ceram. Soc. 85, 1650–1680 (2002).

    Google Scholar

  3. Hull, S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004).

    Article CAS Google Scholar

  4. Wagner, C. The electromotive force of the cell: Ag|AgI|Ag2S|Pt(+S). Z.Elektrochem. Angew. Phys. Chem. 40, 364–365 (1934).

    CAS Google Scholar

  5. Miyatani, S. Electrical properties of the pseudo-binary systems Ag2TexSe1−x, Ag2TexS1−x, and Ag2SexS1−x . J. Phys. Soc. Jpn. 15, 1586–1595 (1960).

    Article CAS Google Scholar

  6. Yokota, I. On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J. Phys. Soc. Jpn. 16, 2213–2223 (1961).

    Article Google Scholar

  7. Rickert, H. & Wagner, C. Stationary conditions and stationary transport occurrences in silver sulfide in a temperature gradient. Ber. Bunsenges. Phys. Chem. 67, 621–629 (1963).

    Article CAS Google Scholar

  8. Wysk, H. & Schmalzried, H. Electrochemical investigation of the α/β-phase transition of silver sulfide. Solid State Ion. 96, 41–47 (1997).

    Article CAS Google Scholar

  9. Shukla, A. K. & Schmalzried, H. Electron transport studies of α-silver sulfide. Z. Phys. Chem. 118, 59–67 (1979).

    Article CAS Google Scholar

  10. Rickert, H. & Wiemhöfer, H.-D. Stability behavior of mixed conducting solidsafter applying electrical potential differences—Measurements with pointelectrodes on Ag2S and Cu2S. Ber. Bunsenges. Phys. Chem. 87, 236–239 (1983).

    Article CAS Google Scholar

  11. Kleinfeld, M. & Wiemhöfer, H.-D. Chemical diffusion-coefficients and stability of CuInS2 and CuInSe2 from polarization measurements with point electrodes. Solid State Ion. 28, 1111–1115 (1988).

    Article Google Scholar

  12. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article CAS Google Scholar

  13. van Ruitenbeek, J. Silver nanoswitch. Nature 433, 21–22 (2005).

    Article CAS Google Scholar

  14. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article CAS Google Scholar

  15. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Mater. 4, 805–818 (2005).

    Article CAS Google Scholar

  16. Bonnecaze, G., Lichanot, A. & Gromb, S. Electronic and electrogalvanic properties of α silver telluride. J. Phys. Chem. Solids 44, 967–974 (1983).

    Article CAS Google Scholar

  17. Preis, W. & Sitte, W. Electrochemical cell for composition dependent measurements of electronic and ionic conductivities of mixed conductors and application to silver telluride. Solid State Ion. 76, 5–14 (1995).

    Article CAS Google Scholar

  18. Riess, I. I–V relations in semiconductor with ionic motions. J. Electroceram. 17, 247–253 (2006).

    Article CAS Google Scholar

  19. Sales, B. C. Critical overview of recent approaches to improved thermoelectric materials. Int. J. Appl. Ceram. Tech. 4, 291–296 (2007).

    Article CAS Google Scholar

  20. Sales, B. C. Smaller is cooler. Science 295, 1248–1249 (2002).

    Article CAS Google Scholar

  21. Lange, S. & Nilges, T. Ag10Te4Br3: A new silver(I) (poly)chalcogenide halide solid electrolyte. Chem. Mater. 18, 2538–2544 (2006).

    Article CAS Google Scholar

  22. Lange, S. Polymorphism, structural frustration, and electrical properties of the mixed conductor Ag10Te4Br3 . Chem. Mater. 19, 1401–1410 (2007).

    Article CAS Google Scholar

  23. Nilges, T., Bawohl, M. & Lange, S. Ag10Te4Br3−xClx and Ag10Te4Br3−yIy: Structural and electrical property tuning of a mixed conductor by partial anion substitution. Z. Naturforsch. 62b, 955–964 (2007).

    Article Google Scholar

  24. Nilges, T. & Bawohl, M. Structures and thermal properties of silver(I) (poly)chalcogenide halide solid solutions Ag10Te4−(q,p)Q(q,p)Br3 with Q=S, Se. Z. Naturforsch. 63b, 629–636 (2008).

    Article Google Scholar

  25. Lange, S., Bawohl, M. & Nilges, T. Crystal structures, thermal and electrical properties of the new silver (poly)chalcogenide halides Ag23Te12Cl and Ag23Te12Br. Inorg. Chem. 47, 2625–2633 (2008).

    Article CAS Google Scholar

  26. Fujikane, M., Kurosaki, K., Muta, H. & Yamanaka, S. Thermoelectric properties of α- and β-Ag2Te. J. Alloys Compounds 393, 299–301 (2005).

    Article CAS Google Scholar

  27. Kurosaki, K., Kosuga, A., Muta, H., Uno, M. & Yamanaka, S. Ag9TlTe5:A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005).

    Article Google Scholar

  28. Papoian, G. A. & Hoffmann, R. Hypervalenzverbindungen in einer, zwei und drei Dimensionen: Erweiterung des Zintl–Klemm–Konzepts auf nichtklassische elektronenreiche Netze. Angew. Chem. 112, 2500–2544 (2000).

    Article Google Scholar

  29. Wu, H.-L., Goff, W. & Phillips, P. Insulator–metal transitions in randomlatticescontaining symmetrical defects. Phys. Rev. B 45, 1623–1628 (1992).

    Article CAS Google Scholar

  30. Korte, C. & Janek, J. Nonisothermal transport properties of α-Ag2+dS:Partial thermopowers of electrons and ions, the Soret effect and heats of transport. J. Phys. Chem. Solids 58, 623–637 (1997).

    Article CAS Google Scholar

  31. Dordor, P., Marquestaut, E. & Villeneuve, G. Dispositif de mesures du pouvoir thermoélectrique sur des échantillons très résistants entre 4 et 300 K. Rev. Phys. Appl. 15, 1607–1612 (1980).

    Article CAS Google Scholar

  32. Dovesi, R. CRYSTAL06, Torino, Italy, (2007).

  33. Towler, M. D., Causa, M. & Zupan, A. Density functional theory in periodicsystems using local Gaussian basis sets. Comput. Phys. Commun. 98, 181 (1996).

    Article CAS Google Scholar

  34. Becke, A. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Article CAS Google Scholar

  35. Savin, A., Nesper, R., Wengert, S. & Fässler, T. E. Die Elektronenlokalisierungsfunktion—ELF. Angew. Chem. 109 1892–1918 (1997); ELF: The electron localization function. Angew. Chem. Int. Ed. Engl.36, 1808–1832 (1997).

  36. Weihrich, R., Anusca, I. & Zabel, M. Halbantiperowskite: Zur Struktur der Shandite M3/2AS (M=Co, Ni; A=In, Sn) und ihren Typ-Antitypbeziehungen. Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).

    Article CAS Google Scholar

  37. Penner, G. H. & Wenli, L. Silver 109 NMR spectroscopy of inorganic solids. Inorg. Chem. 43, 5588–5597 (2004).

    Article CAS Google Scholar

Download references

Reversible switching between p- and n-type conduction in the semiconductor Ag10Te4Br3 (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Kareem Mueller DO

Last Updated:

Views: 6186

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Kareem Mueller DO

Birthday: 1997-01-04

Address: Apt. 156 12935 Runolfsdottir Mission, Greenfort, MN 74384-6749

Phone: +16704982844747

Job: Corporate Administration Planner

Hobby: Mountain biking, Jewelry making, Stone skipping, Lacemaking, Knife making, Scrapbooking, Letterboxing

Introduction: My name is Kareem Mueller DO, I am a vivacious, super, thoughtful, excited, handsome, beautiful, combative person who loves writing and wants to share my knowledge and understanding with you.